哪些cpu带核显

  1. CPU、GPU、NPU、TPU、SOC,哪种芯片的技术门槛最高

CPU、GPU、NPU、TPU、SOC,哪种芯片的技术门槛最高

SoC。

别看Intel,NV很牛,说实话,他俩技术真一般。为什么这么说呢? 其实他俩主要是靠先发优势积累下来的专利来维持自己的优势,技术上,并不是有多么牛。最重要是案例就是,Intel和NV都做过SoC,全都失败了,根本原因没有能力。

Intel当初做移动x86芯片,整合基带,DSP,基带等,做不了,最终实在中国展讯的帮助下,才做成了SoC(不信自己去查新闻),但是后来,Intel一直做不好功耗和SoC的兼容性,后来没有了下文。

NVIDIA,也做过SoC,大家还记得小米3的首发芯片就是NV家的,还是功耗,兼容和基带做不好,NV专门收购了世界唯三的CDMA基带公司(另外两家是高通和威盛),但是基带集成这个问题,NV做了3年,没有任何效果,最后NV放弃移动芯片,专做pad和汽车了(不用基带,不用严格控制功耗)。

所以,不要感觉Intel和MV有多高大上,他们只是做了三四十年,熟悉了,还有老外比较擅长构建专利墙。

这也为中国打击美国半导体产业提供了一个方法: 我不保护你的专利,(x86随便用吧,GPU专利也随便用)。。。有人说,这不很流氓吗? 那我问你使用君子手段对付流氓管用,还是流氓手段对付流氓好用? 落后者,不要总想者保护知识产权,或者对内对外俩政策,等自己牛逼了,再严格保护知识产权

此外,还要挖他的人。一个团队一个团队的挖。

有个问题已经有同学说了,soc与其他四个不在同一个范畴,不参与讨论。前面四个,其实考量的维度也很多。如果一定要排序的话,个人认为在同样的设计制造水平下,应用范围越广频度越高的,需要支持的逻辑单元种类和特性越多,从稳定性上讲难度越大,稳定是商用的极其重要的指标,性能和功耗还能逐步改进。因此大体上是CPU>GPU>NPU≈TPU

soc的门槛其实是最高的,毕竟soc是个整合架构,涵盖但不限于前面几个的一种。

但是排除了soc,门槛最高的就是tpu和npu。因为这两个涉及到人工智能这个新领域,而目前能做的基本数据就寥寥数十家(包括谷歌和华为),可见其技术难度。

而CPU与GPU门槛反而是最低的,基本上套个壳都能用,极端点的就像麒麟,mtk,澎湃等基本上拿来就用的。

CPU和GPU门槛是低,但是要做得好做到能赚钱,同时还兼具高性能,那难度比npu和tpu难度更大。目前能做到这些的用四根手指头能数的出来:高通,AMD,nvdia,Intel。(三星苹果因为不外卖,无法知晓在CPU这一块是否有赚钱,因此不在范围之内)

当然是SOC了。

SOC叫做片上系统,别的都是xx处理器,而只有SOC叫做系统。一块普通的soc能把CPU,GPU,NPU都集成进去。

以骁龙845为例,这块SOC集成了基带,CPU,GPU,DSP,ISP,音频单元,系统内存和安全单元。其内部结构的复杂程度远超桌面CPU或者显卡核心。

以骁龙845为例,这块SOC集成了基带,CPU,GPU,DSP,ISP,音频单元,系统内存和安全单元。其内部结构的复杂程度远超桌面CPU或者显卡核心。

哪些cpu带核显 - IT吧

除了SOC之外,GPU是最复杂的。第一,GPU规模巨大,英伟达的GV100核心有大概211亿个晶体管,而英特尔6700K则只有17.5亿晶体管。第二,GPU驱动是最复杂的,目前来看世界上能解决GPU驱动问题的厂商只有英伟达。

CPU并不复杂,只要你的指令集和架构能有配套的系统就够了。TPU和NPU是协处理器,他们在专业用途上很强但并不复杂。

技术门槛,都不低。相比之下,越是新出现的芯片种类,其技术门槛就越高。

芯片的门槛要看几个方面,包括算法设计、材料工艺,加工工艺和封装测试。有时设计算法能做好,但是加工环节被卡了脖子也会失败。另外就是应用生态。有了芯片要在实际产品上应用,之后才能验证和改进。这点是国内芯片厂商最困难的。在进口芯片的挤压下,敢于试用国产芯片,需要很大的勇气、魄力。

从国内目前各公司技术水平看,能达到国际前沿水平的,目前可能只有寒武纪,其他公司还在努力,希望能早日突破。

下面把几个概念通俗介绍一下:

CPU,全称是Central Processing Unit,即中央处理器。

这个缩写相信大家最熟悉,它是计算机系统的“大脑”

CPU主要包括运算器、控制单元、若干寄存器、高速缓存器和它们之间通讯的数据、控制及状态的总线。

它的工作思路是:存储程序,按顺序执行。它最擅长于逻辑控制。由于CPU需要大量的空间去放置存储单元和控制逻辑,计算能力就受限制,所以就有了GPU出场。

目前CPU技术上没有革命性的技术变革,只要我们按照科学的程序,一步步努力,不冒进,早晚能赶上。

GPU全称是Graphics Processing Unit, 即图像处理器;

GPU主要解决并行运算问题。举个生活中的例子。超市收银台前,顾客有100人排队。如果只有一个收银员,那么即使他操作速度再快,也要大家排队耗时间。如果有50个收银员同时收款,很快就解决问题。GPU解决的就是这个问题。这个问题在图形图处理时问题最突出,故改变算法规则,由GPU芯片来解决。但GPU不能独立工作,必须由CPU控制。

NPU全称是Neural network Processing Unit, 即神经网络处理器;

NPU,神经网络处理器,在电路层模拟人类神经元和突触,并且用深度学习指令集直接处理,一条指令对应一组神经元的任务。由于实现存储和计算一体化,故计算效率大大提高。

TPU全称是Tensor Processing Unit, 即张量处理器;

是一种为通过基于神经网络运算能力的一种ASIC,即专用集成电路。他把微处理器、模拟IP核、数字IP核和存储器集成在一个芯片上。这是解决运算速度的另外一个思路,就是专项任务,专项解决。它通常根据特定运算任务开发,指向特定用途。比如人机大战中的AlphaGo。

SOC全称是System on a Chip,其本质上就是上面说的ASIC。可以叫作系统级芯片,或者叫片上系统

以上内容是万老网对哪些cpu带gpu的问题就介绍到这了,希望介绍关于哪些cpu带gpu的1点解答对大家有用。

哪些cpu带核显